Thursday, 25 April, 2024
HomeEndocrinologyCognitive performance impacted by insulin resistance

Cognitive performance impacted by insulin resistance

A Tel Aviv University study has found that insulin resistance, caused in part by obesity and physical inactivity, is also linked to a more rapid decline in cognitive performance. According to the research, both diabetic and non-diabetic subjects with insulin resistance experienced accelerated cognitive decline in executive function and memory.

The study was led jointly by Professor David Tanne and Professor Uri Goldbourt and conducted by Dr Miri Lutski, all of TAU's Sackler School of Medicine.

"These are exciting findings because they may help to identify a group of individuals at increased risk of cognitive decline and dementia in older age," says Tanne. "We know that insulin resistance can be prevented and treated by lifestyle changes and certain insulin-sensitising drugs. Exercising, maintaining a balanced and healthy diet, and watching your weight will help you prevent insulin resistance and, as a result, protect your brain as you get older."

Insulin resistance is a condition in which cells fail to respond normally to the hormone insulin. The resistance prevents muscle, fat, and liver cells from easily absorbing glucose. As a result, the body requires higher levels of insulin to usher glucose into its cells. Without sufficient insulin, excess glucose builds up in the bloodstream, leading to prediabetes, diabetes, and other serious health disorders.

The scientists followed a group of nearly 500 patients with existing cardiovascular disease for more than two decades. They first assessed the patients' baseline insulin resistance using the homeostasis model assessment (HOMA), calculated using fasting blood glucose and fasting insulin levels. Cognitive functions were assessed with a computerized battery of tests that examined memory, executive function, visual spatial processing, and attention. The follow-up assessments were conducted 15 years after the start of the study, then again five years after that.

The study found that individuals who placed in the top quarter of the HOMA index were at an increased risk for poor cognitive performance and accelerated cognitive decline compared to those in the remaining three-quarters of the HOMA index. Adjusting for established cardiovascular risk factors and potentially confounding factors did not diminish these associations.

"This study lends support for more research to test the cognitive benefits of interventions such as exercise, diet, and medications that improve insulin resistance in order to prevent dementia," says Tanne. The team is currently studying the vascular and non-vascular mechanisms by which insulin resistance may affect cognition.

Abstract
Background: The role of insulin resistance (IR) in the pathogenesis of cognitive performance is not yet clear. Objective: To examine the associations between IR and cognitive performance and change in cognitive functions two decades later in individuals with cardiovascular disease with and without diabetes.
Methods: A subset of 489 surviving patients (mean age at baseline 57.7±6.5 y) with coronary heart disease who previously participated in the secondary prevention Bezafibrate Infarction Prevention (BIP trial; 1990–1997), were included in the current neurocognitive study. Biochemical parameters including IR (using the homeostasis model of assessment; HOMA-IR) were measured at baseline. During 2004–2008, computerized cognitive assessment and atherosclerosis parameters were measured (T1; n = 558; mean age 72.6±6.4 years). A second cognitive assessment was performed during 2011–2013 (T2; n = 351; mean age 77.2±6.4 years). Cognitive function, overall and in specific domains, was assessed. We used linear regression models and linear mixed models to evaluate the differences in cognitive performance and decline, respectively.
Results: Controlling for potential confounders, IR (top HOMA-IR quartile versus others) was associated with subsequent poorer cognitive performance overall (β= –4.45±Standard Error (SE) 1.54; p = 0.004) and on tests of memory and executive function among non-diabetic patients (β= –7.16±2.38; p = 0.003 and β= –3.33±1.84; p = 0.073, respectively). Moreover, among non-diabetic patients, IR was related to a greater decline overall (β= –0.17±0.06; p = 0.008), and in memory (β= –0.22±0.10; p = 0.024) and executive function (β= –0.19±0.08; p = 0.012). The observed associations did not differ after excluding subjects with prevalent stroke or dementia.
Conclusion: IR is related to subsequent poorer cognitive performance and greater cognitive decline among patients with cardiovascular disease with and without diabetes.

Authors
Miri Lutski, Galit Weinstein, Uri Goldbourt, David Tanne

[link url="https://www.sciencedaily.com/releases/2017/03/170321122554.htm"]American Friends of Tel Aviv University material[/link]
[link url="http://content.iospress.com/articles/journal-of-alzheimers-disease/jad161016"]Journal of Alzheimer’s Disease abstract[/link]

MedicalBrief — our free weekly e-newsletter

We'd appreciate as much information as possible, however only an email address is required.