No evidence that high-protein diet improves strength or muscle mass

Organisation: Position: Deadline Date: Location:

A 10-week muscle-building and dietary programme involving 50 middle-aged adults found no evidence that eating a high-protein diet increased strength or muscle mass more than consuming a moderate amount of protein while training. The intervention involved a standard strength-training protocol with sessions three times per week. None of the participants had previous weightlifting experience.

The study is one of the most comprehensive investigations of the health effects of diet and resistance training in middle-aged adults, the researchers say. Participants were 40-64 years of age.

The team assessed participants' strength, lean-body mass, blood pressure, glucose tolerance and several other health measures before and after the program. They randomized participants into moderate- and high-protein diet groups. To standardise protein intake, the researchers fed each person a freshly cooked, minced beef steak and carbohydrate beverage after every training session. They also sent participants home with an isolated-protein drink to be consumed every evening throughout the 10 weeks of the study.

"The moderate-protein group consumed about 1.2 grams of protein per kilogram of body weight per day, and the high-protein group consumed roughly 1.6 grams per kilogram per day," said Colleen McKenna, a graduate student in the division of nutritional sciences and registered dietician at the University of Illinois Urbana-Champaign who led the study with U of I kinesiology and community health professor Nicholas Burd. The team kept calories equivalent in the meals provided to the two groups with additions of beef tallow and dextrose.

The study subjects kept food diaries and McKenna counselled them every other week about their eating habits and protein intake.

In an effort led by U of I food science and human nutrition professor Hannah Holscher, the team also analysed gut microbes in faecal samples collected at the beginning of the intervention, after the first week – during which participants adjusted to the new diet but did not engage in physical training – and at the end of the 10 weeks. Previous studies have found that diet alone or endurance exercise alone can alter the composition of microbes in the digestive tract.

"The public health messaging has been that Americans need more protein in their diet, and this extra protein is supposed to help our muscles grow bigger and stronger," Burd said. "Middle age is a bit unique in that as we get older, we lose muscle and, by default, we lose strength. We want to learn how to maximise strength so that as we get older, we're better protected and can ultimately remain active in family and community life."

The American Food and Nutrition Board recommends that adults get 0.8 grams of protein per kilogram of body weight per day to avoid developing a protein deficiency. The team tried to limit protein consumption in the moderate-protein group to the Recommended Daily Allowance, but their food diaries revealed those participants were consuming, on average, 1.1 to 1.2 grams of protein per kilogram of body weight per day. Those in the high-protein group ate about 1.6 grams of protein per kilogram per day – twice the recommended amount.

Burd and his colleagues hypothesised that getting one's protein from a high-quality source like beef and consuming significantly more protein than the RDA would aid in muscle growth and strength in middle-aged adults engaged in resistance training. But at the end of the 10 weeks, the team saw no significant differences between the groups. Their gains in strength, their body fat, lean body mass, glucose tolerance, kidney function, bone density and other "biomarkers" of health were roughly the same.

The only potentially negative change researchers recorded between the groups involved alterations to the population of microbes that inhabit the gut. After one week on the diet, those in the high-protein group saw changes in the abundance of some gut microbes that previous studies have linked to negative health outcomes. Burd and his colleagues found that their strength-training intervention reversed some of these changes, increasing beneficial microbes and reducing the abundance of potentially harmful ones.

"We found that high protein intake does not further increase gains in strength or affect body composition," Burd said. "It didn't increase lean mass more than eating a moderate amount of protein. We didn't see more fat loss, and body composition was the same between the groups. They got the gain in weight, but that weight gain was namely from lean-body-mass gain."

Burd said the finding makes him question the push to increase protein intake beyond 0.8-1.1 grams per kilogram of body weight, at least in middle-aged weightlifters consuming high-quality animal-based protein on a regular basis.

McKenna said the team's multidisciplinary approach and in-depth tracking of participants' dietary habits outside the laboratory makes it easier to understand the findings and apply them to daily life.

"We have recommendations for healthy eating and we have recommendations for how you should exercise, but very little research looks at how the two together impact our health," she said. The study team included exercise physiologists, registered dietitians and experts on gut microbiology.

"This allowed us to address every aspect of the intervention in the way it should be addressed," McKenna said. "We're honouring the complexity of human health with the complexity of our research."

 

Study details
Higher protein intake during resistance training does not potentiate strength, but modulates gut microbiota, in middle-aged adults: a randomized control trial

Colleen F McKenna, Amadeo F Salvador, Riley L Hughes, Susannah E Scaroni, Rafael A Alamilla, Andrew T Askow, Scott A Paluska, Anna C Dilger, Hannah D Holscher, Michael De Lisio, Naiman A Khan, Nicholas A Burd

Published in the American Journal of Physiology-Endocrinology and Metabolism on 8 March 2021

Abstract
Protein intake above the Recommended Dietary Allowance (RDA) and resistance training are known anabolic stimuli to support healthy aging. Specifically, protein supplementation after resistance exercise and nightly are strategies to maximize utilization of protein intake above the RDA in healthy adults. As such, the primary objective was to examine the efficacy of protein supplementation and nutritional counseling resulting in either moderate (MOD: ~1.0 g·kg−1·d−1) or higher (HIGH: ~1.6 g·kg−1·d−1) protein intake during resistance training on strength (one-repetition maximum, 1-RM; isokinetic and isometric peak torque) in healthy middle-aged adults. Exploratory analyses include diet-exercise effects on lean body mass (LBM), clinical biomarkers, gut microbiota, and diet composition. 50 middle-aged adults (age: 50 ± 8 y, BMI: 27.2 ± 4.1 kg·m-2) were randomized to either MOD or HIGH protein intake during a 10-week resistance training program (3 × week). Participants received dietary counseling and consumed either 15 g (MOD) or 30 g (HIGH) of protein from lean beef in the immediate post-exercise period and each evening. Maximal strength (1-RM) for all upper and lower body exercises significantly increased with no effect of protein intake (P<0.050). There was a main effect of time for LBM (P<0.005). Cardiovascular, renal, or glycemic biomarkers were not affected by the intervention. Gut microbiota were associated with several health outcomes (P<0.050). In conclusion, higher protein intake above moderate amounts does not potentiate resistance training adaptations in previously untrained middle-aged adults.

 

University of Illinois at Urbana-Champaign material

American Journal of Physiology-Endocrinology and Metabolism study (Restricted access)

 

See also MedicalBrief archives:

Long-term kidney damage a risk for those on high protein diets

High meat, high protein diet link to heart failure

High-protein diet negates metabolic benefits of weight loss


Receive Medical Brief's free weekly e-newsletter



Related Posts

Thank you for subscribing to MedicalBrief


MedicalBrief is Africa’s premier medical news and research weekly newsletter. MedicalBrief is published every Thursday and delivered free of charge by email to over 33 000 health professionals.

Please consider completing the form below. The information you supply is optional and will only be used to compile a demographic profile of our subscribers. Your personal details will never be shared with a third party.


Thank you for taking the time to complete the form.