Friday, 26 April, 2024
HomeNeurologyHyperbaric oxygen therapy improves brain metabolism in Alzheimer's patient

Hyperbaric oxygen therapy improves brain metabolism in Alzheimer's patient

Dr Paul Harch, clinical professor and director of hyperbaric medicine at Louisiana State University Health New Orleans School of Medicine, and Dr Edward Fogarty, chair of radiology at the University of North Dakota School of Medicine, report the first PET scan-documented case of improvement in brain metabolism in Alzheimer's disease in a patient treated with hyperbaric oxygen therapy (HBOT).

The authors report the case of a 58-year-old female who had experienced five years of cognitive decline, which began accelerating rapidly. Single photon emission computed tomography (SPECT) suggested Alzheimer's disease. The diagnosis was confirmed by 18Fluorodeoxyglucose (18FDG) positron emission tomography (PET) brain imaging, which revealed global and typical metabolic deficits in Alzheimer's.

The patient underwent a total of 40 HBOT treatments – five days a week over 66 days. Each treatment consisted of 1.15 atmosphere absolute/50 minutes total treatment time. After 21 treatments, the patient reported increased energy and level of activity, better mood and ability to perform daily living activities as well as work crossword puzzles.

After 40 treatments, she reported increased memory and concentration, sleep, conversation, appetite, ability to use the computer, more good days (5/7) than bad days, resolved anxiety, and decreased disorientation and frustration. Tremor, deep knee bend, tandem gain, and motor speed were also improved. Repeat 18FDG PET imaging one-month post-HBOT showed global 6.5-38% improvement in brain metabolism.

"We demonstrated the largest improvement in brain metabolism of any therapy for Alzheimer's disease," notes Harch. "HBOT in this patient may be the first treatment not only to halt, but temporarily reverse disease progression in Alzheimer's disease."

The report also contains video imaging, including unique rotating PET 3D Surface Reconstructions, which allow the lay person to easily see the improvements in brain function.

"PET imaging is used around the world as a biomarker in oncology and cardiology to assay responses to therapy," says Fogarty. "We now have an irrefutable biomarker system that this intervention has promise where no other real hope for recovery of dementia has ever existed before."

The physicians report that two months post-HBOT, the patient felt a recurrence in her symptoms. She was retreated over the next 20 months with 56 HBOTs (total 96) at the same dose, supplemental oxygen, and medications with stability of her symptoms and Folstein Mini-Mental Status exam.

According to the National Institutes of Health, "Alzheimer's disease is an irreversible, progressive brain disorder that slowly destroys memory and thinking skills and, eventually, the ability to carry out the simplest tasks. It is the most common cause of dementia in older adults. Alzheimer's disease is currently ranked as the sixth leading cause of death in the United States, but recent estimates indicate that the disorder may rank third, just behind heart disease and cancer, as a cause of death for older people."

The authors note that four pathological processes have been identified and primary treatment is with acetylcholinesterase inhibitors or the N-methyl-D-aspartate receptor antagonist memantine, which have been shown to have a positive impact on Alzheimer's disease progression with no significant disease-modifying effects.

HBOT is an epigenetic modulation of gene expression and suppression to treat wounds and disease pathophysiology, particularly inflammation. HBOT targets all four of the pathological processes of AD by affecting the microcirculation; mitochondrial dysfunction, and biogenesis; reducing amyloid burden and tau phosphorylation; controlling oxidative stress; and reducing inflammation.

The first successful HBOT-treated case of Alzheimer's disease was published in 2001. The present case report is the first patient in a series of 11 HBOT-treated patients with Alzheimer's disease whose symptomatic improvement is documented with 18fluorodeoxyglucose positron emission tomography (18FDG PET). "Our results suggest the possibility of treating Alzheimer's disease long-term with HBOT and pharmacotherapy," concludes Harch.

Abstract
A 58-year-old female was diagnosed with Alzheimer’s dementia (AD) which was rapidly progressive in the 8 months prior to initiation of hyperbaric oxygen therapy (HBOT). 18Fluorodeoxyglucose (18FDG) positron emission tomography (PET) brain imaging demonstrated global and typical metabolic deficits in AD (posterior temporal-parietal watershed and cingulate areas). An 8-week course of HBOT reversed the patient’s symptomatic decline. Repeat PET imaging demonstrated a corresponding 6.5–38% regional and global increase in brain metabolism, including increased metabolism in the typical AD diagnostic areas of the brain. Continued HBOT in conjunction with standard pharmacotherapy maintained the patient’s symptomatic level of function over an ensuing 22 months. This is the first reported case of simultaneous HBOT-induced symptomatic and 18FDG PET documented improvement of brain metabolism in AD and suggests an effect on global pathology in AD.

Authors
PaulG Harch, EdwardF Fogarty

[link url="https://www.sciencedaily.com/releases/2019/01/190124124742.htm"]Louisiana State University Health Sciences Centre material[/link]
[link url="http://www.medgasres.com/article.asp?issn=2045-9912;year=2018;volume=8;issue=4;spage=181;epage=184;aulast=Harch"]Medical Gas Research abstract[/link]

MedicalBrief — our free weekly e-newsletter

We'd appreciate as much information as possible, however only an email address is required.