Low-impulse electrical stimulation improves neural function in TBI

Organisation: Position: Deadline Date: Location:

Using a form of low-impulse electrical stimulation to the brain, documented by neuroimaging, researchers at the University of California San Diego School of Medicine, Veterans Affairs San Diego Healthcare System (VASDHS) and collaborators elsewhere, report significantly improved neural function in participants with mild traumatic brain injury (TBI).

TBI is a leading cause of sustained physical, cognitive, emotional and behavioral problems in both the civilian population (primarily due to motor vehicle accidents, sports, falls and assaults) and among military personnel (blast injuries). In the majority of cases, injury is deemed mild (75% of civilians, 89% of military), and typically resolves in days.

But in a significant percentage of cases, mild TBI and related post-concussive symptoms persist for months, even years, resulting in chronic, long-term cognitive and/or behavioral impairment.

Much about the pathology of mild TBI is not well understood, which the authors say has confounded efforts to develop optimal treatments. However, they note the use of passive neuro-feedback, which involves applying low-intensity pulses to the brain through transcranial electrical stimulation (LIP-tES), has shown promise.

In their pilot study, which involved six participants who had suffered mild TBI and experienced persistent post-concussion symptoms, the researchers used a version of LIP-tES called IASIS, combined with concurrent electroencephalography monitoring (EEG). The treatment effects of IASIS were assessed using magnetoencephalography (MEG) before and after treatment. MEG is a form of non-invasive functional imaging that directly measures brain neuronal electromagnetic activity, with high temporal resolution (1 ms) and high spatial accuracy (~3 mm at the cortex).

“Our previous publications have shown that MEG detection of abnormal brain slow-waves is one of the most sensitive biomarkers for mild traumatic brain injury (concussions), with about 85% sensitivity in detecting concussions and, essentially, no false-positives in normal patients,” said senior author Dr Roland Lee, professor of radiology and director of neuroradiology, MRI and MEG at UC San Diego School of Medicine and VASDHS. “This makes it an ideal technique to monitor the effects of concussion treatments such as LIP-tES.”

The researchers found that the brains of all six participants displayed abnormal slow-waves in initial, baseline MEG scans. Following treatment using IASIS, MEG scans indicated measurably reduced abnormal slow-waves. The participants also reported a significant reduction in post-concussion scores.

“For the first time, we’ve been able to document with neuroimaging the effects of LIP-tES treatment on brain functioning in mild TBI,” said first author Dr Ming-Xiong Huang, professor in the department of radiology at UC San Diego School of Medicine and a research scientist at VASDHS. “It’s a small study, which certainly must be expanded, but it suggests new potential for effectively speeding the healing process in mild traumatic brain injuries.”

Disclosure: Barry Bruder and Corey Snook are associated with IASIS Technologies. Their contribution to this work was limited to providing group training to researchers, technical support and technical information related to the IASIS system.

Abstract
Background: Mild traumatic brain injury (mTBI) is a leading cause of sustained impairments in military service members, Veterans, and civilians. However, few treatments are available for mTBI, partially because the mechanism of persistent mTBI deficits is not fully understood.
Methods: We used magnetoencephalography (MEG) to investigate neuronal changes in individuals with mTBI following a passive neurofeedback-based treatment programme called IASIS. This programme involved applying low-intensity pulses using transcranial electrical stimulation (LIP-tES) with electroencephalography monitoring. Study participants included six individuals with mTBI and persistent post-concussive symptoms (PCS). MEG exams were performed at baseline and follow-up to evaluate the effect of IASIS on brain functioning.
Results: At the baseline MEG exam, all participants had abnormal slow-waves. In the follow-up MEG exam, the participants showed significantly reduced abnormal slow-waves with an average reduction of 53.6 ± 24.6% in slow-wave total score. The participants also showed significant reduction of PCS scores after IASIS treatment, with an average reduction of 52.76 ± 26.4% in PCS total score.
Conclusions: The present study demonstrates, for the first time, the neuroimaging-based documentation of the effect of LIP-tES treatment on brain functioning in mTBI. The mechanisms of LIP-tES treatment are discussed, with an emphasis on LIP-tES’s potentiation of the mTBI healing process.

Authors
Ming-Xiong Huang, Ashley Robb Swan, Annemarie Angeles Quinto, Scott Matthews, Deborah L Harrington, Sharon Nichols, Barry J Bruder, Corey C Snook, Charles W Huang, Dewleen G Baker, Roland R Lee

University of California – San Diego material
Brain Injury abstract


Receive Medical Brief's free weekly e-newsletter



Related Posts

Thank you for subscribing to MedicalBrief


MedicalBrief is Africa’s premier medical news and research weekly newsletter. MedicalBrief is published every Thursday and delivered free of charge by email to over 33 000 health professionals.

Please consider completing the form below. The information you supply is optional and will only be used to compile a demographic profile of our subscribers. Your personal details will never be shared with a third party.


Thank you for taking the time to complete the form.