Saturday, 20 April, 2024
HomeNeurologyNew blood test shows 'remarkable' promise in the diagnosis of Alzheimer's

New blood test shows 'remarkable' promise in the diagnosis of Alzheimer's

A new blood test demonstrated remarkable promise in discriminating between persons with and without Alzheimer's disease and in persons at known genetic risk may be able to detect the disease as early as 20 years before the onset of cognitive impairment, according to a large international study presented at the Alzheimer's Association International Conference.

For many years, the diagnosis of Alzheimer's has been based on the characterization of amyloid plaques and tau tangles in the brain, typically after a person dies. An inexpensive and widely available blood test for the presence of plaques and tangles would have a profound impact on Alzheimer's research and care. According to the new study, measurements of phospho-tau217 (p-tau217), one of the tau proteins found in tangles, could provide a relatively sensitive and accurate indicator of both plaques and tangles – corresponding to the diagnosis of Alzheimer's – in living people.

"The p-tau217 blood test has great promise in the diagnosis, early detection, and study of Alzheimer's," said Dr Oskar Hansson, professor of clinical memory research at Lund University, Sweden, who leads the Swedish BioFINDER Study and senior author on the study who spearheaded the international collaborative effort. "While more work is needed to optimize the assay and test it in other people before it becomes available in the clinic, the blood test might become especially useful to improve the recognition, diagnosis, and care of people in the primary care setting."

Researchers evaluated a new p-tau217 blood test in 1,402 cognitively impaired and unimpaired research participants from well-known studies in Arizona, Sweden, and Colombia. The study, which was coordinated from Lund University in Sweden, included 81 Arizona participants in Banner Sun Health Research Institute's Brain Donation programme who had clinical assessments and provided blood samples in their last years of life and then had neuropathological assessments after they died; 699 participants in the Swedish BioFINDER Study who had clinical, brain imaging, cerebrospinal fluid (CSF), and blood-based biomarker assessments; and 522 Colombian autosomal dominant Alzheimer's disease (ADAD)-causing mutation carriers and non-carriers from the world's largest ADAD cohort.

In the Arizona (Banner Sun Health Research Institute) Brain Donation Cohort, the plasma p-tau217 assay discriminated between Arizona Brain donors with and without the subsequent neuropathological diagnosis of "intermediate or high likelihood Alzheimer's" (characterised by plaques, as well as tangles that have at least spread to temporal lobe memory areas or beyond) with 89% accuracy; it distinguished between those with and without a diagnosis of "high likelihood Alzheimer's" with 98% accuracy; and higher ptau217 measurements were correlated with higher brain tangle counts only in those persons who also had amyloid plaques.

In the Swedish BioFINDER Study, the assay discriminated between persons with the clinical diagnoses of Alzheimer's and other neurodegenerative diseases with 96% accuracy, similar to tau PET scans and CSF biomarkers and better than several other blood tests and MRI measurements; and it distinguished between those with and without an abnormal tau PET scan with 93% accuracy.

In the Colombia Cohort, the assay began to distinguish between mutation carriers and non-carriers 20 years before their estimated age at the onset of mild cognitive impairment.

In each of these analyses, p-tau217 (a major component of Alzheimer's disease-related tau tangles) performed better than p-tau181 (another component of tau tangles and a blood test recently found to have promise in the diagnosis of Alzheimer's) and several other studied blood tests.

Other study leaders include Dr Jeffrey Dage, from Eli Lilly and Company, who developed the p-tau217 assay, co-first authors Dr Sebastian Palmqvist, and Dr Shorena Janelidz from Lund University, and Dr Eric Reiman, Banner Alzheimer's Institute, who organised the analysis of Arizona and Colombian cohort data.

In the last two years, researchers have made great progress in the development of amyloid blood tests, providing valuable information about one of the two cardinal features of Alzheimer's. While more work is needed before the test is ready for use in the clinic, a p-tau217 blood test has the potential to provide information about both plaques and tangles, corresponding to the diagnosis of Alzheimer's. It has the potential to advance the disease's research and care in other important ways.

"Blood tests like p-tau217 have the potential to revolutionize Alzheimer's research, treatment and prevention trials, and clinical care," said Reiman. "While there's more work to do, I anticipate that their impact in both the research and clinical setting will become readily apparent within the next two years."

Abstract
Importance: There are limitations in current diagnostic testing approaches for Alzheimer disease (AD).
Objective: To examine plasma tau phosphorylated at threonine 217 (P-tau217) as a diagnostic biomarker for AD.
Design, Setting, and Participants: Three cross-sectional cohorts: an Arizona-based neuropathology cohort (cohort 1), including 34 participants with AD and 47 without AD (dates of enrollment, May 2007-January 2019); the Swedish BioFINDER-2 cohort (cohort 2), including cognitively unimpaired participants (n = 301) and clinically diagnosed patients with mild cognitive impairment (MCI) (n = 178), AD dementia (n = 121), and other neurodegenerative diseases (n = 99) (April 2017-September 2019); and a Colombian autosomal-dominant AD kindred (cohort 3), including 365 PSEN1 E280A mutation carriers and 257 mutation noncarriers (December 2013-February 2017).
Exposures: Plasma P-tau217.
Main Outcomes and Measures: Primary outcome was the discriminative accuracy of plasma P-tau217 for AD (clinical or neuropathological diagnosis). Secondary outcome was the association with tau pathology (determined using neuropathology or positron emission tomography [PET]).
Results: Mean age was 83.5 (SD, 8.5) years in cohort 1, 69.1 (SD, 10.3) years in cohort 2, and 35.8 (SD, 10.7) years in cohort 3; 38% were women in cohort 1, 51% in cohort 2, and 57% in cohort 3. In cohort 1, antemortem plasma P-tau217 differentiated neuropathologically defined AD from non-AD (area under the curve [AUC], 0.89 [95% CI, 0.81-0.97]) with significantly higher accuracy than plasma P-tau181 and neurofilament light chain (NfL) (AUC range, 0.50-0.72; P < .05). The discriminative accuracy of plasma P-tau217 in cohort 2 for clinical AD dementia vs other neurodegenerative diseases (AUC, 0.96 [95% CI, 0.93-0.98]) was significantly higher than plasma P-tau181, plasma NfL, and MRI measures (AUC range, 0.50-0.81; P < .001) but not significantly different compared with cerebrospinal fluid (CSF) P-tau217, CSF P-tau181, and tau-PET (AUC range, 0.90-0.99; P > .15). In cohort 3, plasma P-tau217 levels were significantly greater among PSEN1 mutation carriers, compared with noncarriers, from approximately 25 years and older, which is 20 years prior to estimated onset of MCI among mutation carriers. Plasma P-tau217 levels correlated with tau tangles in participants with (Spearman ρ = 0.64; P < .001), but not without (Spearman ρ = 0.15; P = .33), β-amyloid plaques in cohort 1. In cohort 2, plasma P-tau217 discriminated abnormal vs normal tau-PET scans (AUC, 0.93 [95% CI, 0.91-0.96]) with significantly higher accuracy than plasma P-tau181, plasma NfL, CSF P-tau181, CSF Aβ42:Aβ40 ratio, and MRI measures (AUC range, 0.67-0.90; P < .05), but its performance was not significantly different compared with CSF P-tau217 (AUC, 0.96; P = .22).
Conclusions and Relevance: Among 1402 participants from 3 selected cohorts, plasma P-tau217 discriminated AD from other neurodegenerative diseases, with significantly higher accuracy than established plasma- and MRI-based biomarkers, and its performance was not significantly different from key CSF- or PET-based measures. Further research is needed to optimize the assay, validate the findings in unselected and diverse populations, and determine its potential role in clinical care.

Authors
Sebastian Palmqvist, Shorena Janelidze, Yakeel T Quiroz, Henrik Zetterberg, Francisco Lopera, Erik Stomrud, Yi Su, Yinghua Chen, Geidy E Serrano, Antoine Leuzy, Niklas Mattsson-Carlgren, Olof Strandberg, Ruben Smith, Andres Villegas, Diego Sepulveda-Falla, Xiyun Chai, Nicholas K Proctor, Thomas G Beach, Kaj Blennow, Jeffrey L Dage, Eric M Reiman, Oskar Hansson

 

[link url="https://www.lu.se/article/nytt-blodprov-upptacker-alzheimers-sjukdom-lika-exakt-som-dyra-och-komplicerade-metoder"]Lung University material[/link]

 

[link url="https://jamanetwork.com/journals/jama/fullarticle/2768841"]JAMA abstract[/link]

MedicalBrief — our free weekly e-newsletter

We'd appreciate as much information as possible, however only an email address is required.